New Discovery Could Energize Development of Lithium-Air Batteries

Lithium-air batteries
Schematic of lithium-air battery charge and discharge cycles.

A University of Texas at Dallas researcher has made a discovery that could open the door to cellphone and car batteries that last five times longer than current ones.

Dr. Kyeongjae Cho, professor of materials science and engineering in the Erik Jonsson School of Engineering and Computer Science, has discovered new catalyst materials for lithium-air batteries that jumpstart efforts at expanding battery capacity. The was published inNature Energy.

“There’s huge promise in lithium-air batteries. However, despite the aggressive research being done by groups all over the world, those promises are not being delivered in real life,” Cho said. “So this is very exciting progress. (UT Dallas graduate student) Yongping Zheng and our collaboration team have demonstrated that this problem can be solved. Hopefully, this discovery will revitalize research in this area and create momentum for further development.”

Lithium-air (or lithium-oxygen) batteries “breathe” oxygen from the air to power the chemical reactions that release electricity, rather than storing an oxidizer internally like lithium-ion batteries do. Because of this, lithium-air batteries boast an energy density comparable to gasoline — with theoretical energy densities as much as 10 times that of current lithium-ion batteries, giving them tremendous potential for storage of renewable energy, particularly in applications such as mobile devices and electric cars.

For example, at one-fifth the cost and weight of those presently on the market, a lithium-air battery would allow an electric car to drive 400 miles on a single charge and a mobile phone to last a week without recharging.

Practical attempts to increase the capacity of lithium-air batteries have so not yielded great results, Cho said, despite efforts from major corporations and universities. Until now, these attempts have resulted in low efficiency and poor rate performance, instability and unwanted chemical reactions.

Cho and Zheng have introduced new research that focuses on the electrolyte catalysts inside the battery, which, when combined with oxygen, create chemical reactions that create battery capacity. They said soluble-type catalysts possess significant advantages over conventional solid catalysts, generally exhibiting much higher efficiency. In particular, they found that only certain organic materials can be utilized as a soluble catalyst.

Based on that background, Cho and Zheng have collaborated with researchers at Seoul National University to create a new catalyst for the lithium-air battery called dimethylphenazine, which possesses higher stability and increased voltage efficiency.

“The catalyst should enable the lithium-air battery to become a more practical energy storage solution,” Zheng said.

According to Cho, his catalyst research should open the door to additional advances in technology. But he said it could take five to 10 years before the research translates into new batteries that can be used in consumer devices and electric vehicles.

Cho said he has been providing research updates to car manufacturers and telecommunications companies, and said there has been interest in his studies.

“Automobile and mobile device batteries are facing serious challenges because they need higher capacity,” he said.

“This is a major step,” Cho said. “Hopefully it will revitalize the interest in lithium-air battery research, creating momentum that can make this practical, rather than just an academic research study.”


Co-authors on the study included researchers led by Dr. Kisuk Kang at Seoul National University. The research was funded by Hyundai Motor Company and National Research Foundation of Korea.

Image credit: Schematic of lithium-air battery charge and discharge cycles By Na9234 – Own work, CC BY 3.0,


  • Jane says:

    I’ve been browsing online more than 4 hours
    today, yet I never found any interesting article like yours.
    It’s pretty worth enough for me. In my view, if all webmasters and bloggers made
    good content as you did, the internet will be a lot more useful than ever before.

  • Ada says:

    Lo mejor de la Boba: suave, flexible, ligera,
    2 bolsillitos, la trabilla para sostener el bolso, el diseño.

  • Thanks , I have recently been looking for info approximately this topic for a long time and
    yours is the best I have came upon so far. However, what about
    the bottom line? Are you certain in regards to the supply?

  • At times, people who own houses simply have lifestyles which can be too hectic to consider the time to do all of items that generally
    need to be completed to prepare a house
    to sell on the market… if that describes your situation,
    simply inform us about the property you’d like
    to liquidate and sell your house fast for cash.

  • m88th says:

    Good blog you have here.. It’s difficult to find high quality writing like yours
    nowadays. I honestly appreciate individuals like you!

    Take care!!

  • I am really inspired with your writing tapents as smartly as with thee structure to your blog.
    Is this a paid subject matter orr did you customize iit yourself?
    Anyway stay up tthe nice quality writing, it’s rare tto peer a nice
    blog like this onee nowadays..

  • admin says:

    Thanks. No we do not have any paid articles. Our only revenue comes from the ads that appear.

    Again thanks for commenting.

  • admin says:

    Thanks so much! That is good to hear from our readers.

Leave a Reply

Your email address will not be published.