NASA’s Orbiting Carbon Observatory-2 Mission Scrubbed Today

Global concentration of CO2

Global concentration of CO2 ( Solar Thermal Magazine ) – Launch Alliance Statement on OCO-2 Scrub July 1, 2014 – 8:09 AM EDT. The launch of a United Launch Alliance Delta II carrying NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite was scrubbed today due to an issue with the water suppression system that is used to flow water on the launch pad to dampen the acoustic energy during launch.

Pending the outcome of troubleshooting, the launch is rescheduled for Wednesday, July 2 from Space Launch Complex-2 at Vandenberg Air Force Station, Calif., The launch time is 2:56 a.m. PDT at the opening of a 30-second window. The forecast for July 2 shows a 100 percent chance of favorable weather conditions for the launch.

Comments to the picture:

The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Launch of OCO-2 is now scheduled for Wednesday, July 2 at 5:56 a.m. EDT (2:56 a.m. Pacific) at the opening of a 30-second window.

About OCO-2

Originally scheduled for launch July 1, 2014 at 2:56 AM, Orbiting Carbon Observatory-2 (OCO-2) will be NASA’s first dedicated Earth remote sensing satellite to study atmospheric carbon dioxide from Space. OCO-2 will be collecting space-based global measurements of atmospheric CO2 with the precision, resolution, and coverage needed to characterize sources and sinks on regional scales. OCO-2 will also be able to quantify CO2 variability over the seasonal cycles year after year.

CO2 is a constituent of the Earth’s atmosphere. We know that CO2 is one of several gases that trap heat near the surface of the Earth. These gases are known as greenhouse gases. Many scientists have concluded that substantial increases in the abundance of CO2 will generate an increase in the Earth’s surface temperature.

Since the beginning of the industrial age, the concentration of CO2 has increased from about 280 parts per million to over 390 parts per million to date. In May 2013, the Mauna Loa Observatory measured a record 400 parts per million in CO2, for the first time ever in human history.Furthermore, a global network of ground-based measurement sites has observed an increase in atmospheric CO2 concentration by almost 20% over the past 50 years – the most dramatic change that we have ever seen in human history. The amount of CO2 added to the atmosphere through human activities, according to the Global Carbon Project (GCP), has been steadily climbing; and the level was over at over 30 billion metric tons in 2005.

The world’s oceans, plants and soils on land, and numerous other less significant carbon pools within the global carbon cycle steadily absorb carbon and are called sinks. They serve to reduce the amount of CO2 that remains in the atmosphere. However, the geographic distributions of carbon uptakes by the oceans and terrestrial ecosystems are still uncertain. In addition, the effectiveness and efficiency of these sinks may change over time as more CO2 is emitted into the atmosphere and, therefore, warrant study.

Missing Carbon Puzzle
Missing Carbon Puzzle
Credit: NASA

OCO-2 will be collecting a great number of high-resolution measurements, which will provide a greater spatial distribution of CO2 over the entire globe, in short, a bigger, clearer, more complete picture of global CO2. These measurements will be combined with data from the ground-based network to provide scientists with the information that they need to better understand the processes that regulate atmospheric CO2 and its role in the carbon cycle. This enhanced understanding is essential for improving predictions of future atmospheric CO2 increases and its impact on Earth’s climate.

Press Release About Press Release